Young Scholar Presentation

Effects of monoglycerides on intestinal morphology and immune responses of weanling pigs experimentally infected with a pathogenic *E. coli*

Sangwoo Park¹, Shuhan Sun¹, Kwangwook Kim¹, Adebayo O. Sokale², Adriana Barri³, and Yanhong Liu¹

¹University of California, Davis, 95616

²BASF Corporation, Florham Park, 07932

³BASF SE, Lampertheim, Germany

Presentation #136

- Gut health and post-weaning diarrhea in pigs
- Monoglycerides
- Experimental design
- Results and conclusions

Gut health of weaning pigs

Intestinal functions

- Digest and absorb nutrients
- Protect the host
- Growth and health of pigs
- Early-life stress
 - Harmful impacts on gut health

Moeser et al., 2018

Gastrointestinal (GI) function development in pig

Gastrointestinal (GI) function development in pig

Weaning stress

- Multifactorial issue
 - > Nutritional, physiological, and environmental challenges
- Stressor-induced changes
 - Reduced appetite
 - Induced intestinal dysfunctions
 - Increased exposure and risk to pathogens
 - Post-weaning diarrhea (PWD)

Post-weaning diarrhea (PWD)

- Gastrointestinal disease
 - Economic losses
- Enterotoxigenic Escherichia coli (ETEC)
 - ➢ F4 (K88) and F18 E. coli
 - Enterotoxins
 - ✓ Secretory diarrhea

Post-weaning E. coli diarrhea

Journal of Animal Science, 2020, Vol. 98, No. 5, 1–10

doi:10.1093/jas/skaa113 Advance Access publication April 17, 2020 Received: 22 October 2019 and Accepted: 16 April 2020 Non Ruminant Nutrition

E. coli challenge and diarrhea

NON RUMINANT NUTRITION

Effects of an F18 enterotoxigenic Escherichia coli challenge on growth performance, immunological status, and gastrointestinal structure of weaned pigs and the potential protective effect of direct-fed microbial blends

Spenser L. Becker, `Qingyun Li, `Eric R. Burrough,† Danielle Kenne,† Orhan Sahin,† Stacie A. Gould,` and John F. Patience^{*,1}

Figure 1. Effects of treatment on the daily fecal score of pigs challenged with F18 ETEC. NC (n = 10); PC (n = 9); DFM1 = PC + direct-fed microbial 1 (n = 8; three strains of Bacillus amyloliquefaciens; 7.5 × 10⁵ cfu/g of feed); DFM2 = PC + direct-fed microbial 2 (n = 7; two strains of B. amyloliquefaciens and one strain of Bacillus subtilis; 1.5 × 10⁵ cfu/g of feed). Supplementation rates were based on manufacturer's recommendations (Danisco Animal Nutrition). P (NC vs. PC; day postinoculation (dpi) 3) < 0.001, P (PC vs. DFM1, DFM2; dpi 3) > 0.10, P (all treatments; dpi 10) > 0.10.

*Fecal score: 0 = solid; 1 = semi-solid; 2 = semi-liquid; 3 = liquid (≥ 2 was considered diarrhea)

Journal of Animal Science, 2022, 100, 1–14 https://doi.org/10.1093/jas/skac353 Advance access publication 22 October 2022 Non Ruminant Nutrition

E. coli challenge and performance

Body weight

Dietary supplementation of botanical blends enhanced performance and disease resistance of weaned pigs experimentally infected with enterotoxigenic *Escherichia coli* F18

Braden T. Wong,[†] Sangwoo Park,^{†,1} Lauren Kovanda,[†] Yijie He,[†] Kwangwook Kim,^{†,®} Shiyu Xu,[†] Christopher Lingga,[†] Monika Hejna,^{†,‡} Emma Wall,^{II,2} Ravichandran Sripathy,^{II} Xunde Li,[§] and Yanhong Liu^{†,3}

Antibiotics and pharmacological dose ZnO

- Prevent and treat PWD
 - Antimicrobial effects
 - Nutrients availability
- Public health risk and concern
 - Antimicrobial resistance
 - Environmental transmission
 - Prohibition of AGPs (Jan 2017, FDA)
 - Prohibition of pharmacological dose ZnO (June 2022, EU)

Public Health Agency of Canada, 2017

Ester bond

Monoglycerides (MGs)

Glycerol linked to fatty acid (esterification)

Short chain and medium chain fatty acids

Natural compound

- Used in food processing and production
- Amphiphilic nature
 - > Hydrophobic & hydrophilic
 - Antimicrobial activity

Jackman et al., 2022

Antimicrobial effects of MGs (in vitro)

Incorporate into the lipid membrane of microorganisms and change the permeability

Propidium iodide staining

Hyldgaard et al., 2012; Joshua et al., 2020

Ester bond

R

HO

Additional benefits of MGs

Strong covalent bond

	Organic acid	Monoglycerides
Antimicrobial	\checkmark	\checkmark
Non-corrosive	-	\checkmark
Non-volatile	-	\checkmark
Heat stable	-	\checkmark
Neutral taste odor	-	\checkmark
pH-independent	-	\checkmark

Easy to handle and use

FRAmelco, 2017

Effects of a mixture of monoglycerides on weaned pigs experimentally infected with a pathogenic Escherichia coli (E. coli) F18

- ✓ Growth performance
- ✓ Diarrhea
- ✓ Intestinal health
- ✓ Immune responses

Animals & experimental design

✤ Animals

- \geq 60 weaned pigs (initial BW = 6.5 ± 0.74 kg; 21 d old)
 - ✓ Individual house (15 replications/treatment)
- ✤ 4 dietary treatments
 - Corn-soybean meal-based diet (Control)
 - Control + 0.3% monoglycerides
 - Control + 3000 ppm zinc oxide (ZnO)
 - Control + 50 mg/kg of antibiotic (carbadox)
- 2-phase feeding (2 weeks/phase; overall 4 weeks)

Timeline and data collection (I)

All pigs were orally inoculated with pathogenic *E. coli* F18 (10¹⁰ CFU/dose)

- Daily fecal scores
 - \succ Score 1 to 5 = firm feces to watery diarrhea
- Percentage of β-hemolytic coliforms in feces
- Growth performance (ADG, ADFI, and G:F)

<u>β-hemolytic coliforms</u> (feces)

Columbia blood agar (β-hemolytic coliforms)

MacConkey agar (Lactose-fermenting bacteria)

Timeline and data collection (II)

Serum acute phase protein level (d 0, 2, 5, and 21 PI)

C-reactive protein and haptoglobin

✤ Intestinal morphology and immune-related gene expression
➢ d 5 PI (6 pigs/treatment) and d 21 PI (9 pigs/treatment)

Statistical analysis

PROC MIXED of SAS

- Randomized complete block design (block: BW)
- Experimental unit: pig
- Fixed effect: dietary treatment
- Chi-square test
 - Frequency of diarrhea

Daily fecal score

*Fecal score = 1, firm feces; 2, moist feces; 3, mild diarrhea; 4, severe diarrhea; 5, watery diarrhea

Frequency of diarrhea (overall)

■ Control ■ Monoglycerides ■ ZnO ■ Antibiotics

β-hemolytic coliforms (feces)

Acute phase proteins (serum)

Duodenum goblet cell number

Duodenum villi area and height

Villi area

Villi height

■ Control ■ Monoglycerides ■ ZnO ■ Antibiotics

Duodenum VH:CD

Ileum CD & VH:CD

Crypt depth

Duodenum villi area and height (d 21 PI)

■ Control ■ Monoglycerides ■ ZnO ■ Antibiotics

Ileum mucosa gene expression (d 5 PI)

■ Control ■ Monoglycerides ■ ZnO ■ Antibiotics

Ileum mucosa gene expression (d 21 PI)

Control Monoglycerides ZnO Antibiotics

Body weight

Growth performance

■ Control ■ Monoglycerides ■ ZnO ■ Antibiotics

- Monoglycerides supplementation
 - Reduce the diarrhea severity
 - > Have a positive effect on the intestinal morphology
 - > Modify the intestinal and systemic inflammation
 - of weaned pigs infected with ETEC F18

Acknowledgements

- Comparative Animal Nutrition & Physiology Laboratory
- BASF Corporation

https://animalnutr-ansci.faculty.ucdavis.edu/

Greatly appreciate your attention!

