Supplementations of *Bacillus* spp. on gut microbiota of weaned pigs under diarrheal stress

Cynthia Jinno

Comparative Animal Nutrition & Physiology Lab

cnjinno@ucdavis.edu

thumbs.dreamstime.com

Gut microbiota

 The digestive system (gut) is crucial for nutrient metabolism and immunity regulation in pigs

extension.purdue.edu

 Microbes are to harbor innumerably in the gut and have been overlooked to understand their benefits for the pig (host)

 The dynamic and diverse population of microbes in the gut is collectively referred to as the <u>gut</u> <u>microbiota</u>

Gut microbiota

 Microbes and their host holds a symbiotic relationship, in which the host allows microbes to habituate in the intestines while the microbes benefits the host's health

Post-weaning stress

- Weaning becomes one of the most stressful moments in pigs
 - Separation from sow and possibly their littermates
 - Change of environment
 - Diet change
- Weaning stress reduces feed intake, which can cause a cascading effect toward pig's health
 - Lower feed intake = less metabolizable energy = disturbance of intestinal development in growing pigs

media.istockphoto.com

ETEC pathogenesis

Post-weaning diarrhea

- Post-weaning stress can cause diarrhea
- Post-weaning diarrhea is commonly induced by enterotoxigenic *E. coli* (**ETEC**)
- Leads to high morbidity rate in weaning pigs along with huge economical loss in the swine industry

Vet Pathol 29:239-246 (1992)

Microbial pathogenesis 117: 162-169 (2018)

Bacillus spp.: Potential feed additives

• Our previous study (He et al., 2020) observed that supplementing *B.* subtilis reduced diarrhea and enhanced growth performance of weaned pigs experimentally infected with ETEC

microbe-canvas.com

Bacillus subtilis

Annals of clinical microbiology and antimicrobials, 14(1), 1-11.

Bacillus amyloliquefaciens

Bacillus spp.: Potential feed additives

• However, impact of *Bacillus* spp. on gut microbiota of weaned pigs under post-weaning diarrhea is not yet understood

Supplementations of *B. subtilis* on intestinal microbiota on weaned pigs challenged with ETEC

Objective 1

Materials & methods

- 48 weaned pigs (6.17 ± 0.36 kg)
 - Around 21-24 day of age
- 4 treatments (12 pigs / treatment)

Sham	NC	Negative control with basal diet		
ETEC	PC	Positive control with basal diet		
	AGP	Basal diet with 50 mg/kg carbadox		
	DFM	Basal diet with 500 mg/kg B. subtilis		

AGP = antibiotics growth promoter (carbadox) DFM = Direct fed microbials (*B. subtilis*)

Fecal samples collected Jejunal digesta, ileal digesta, and cecal content

16S rRNA sequencing

Gut microbiota analysis

Alpha diversity:

- Shannon index (richness & evenness)
- Chao1 index (richness only)

Beta diversity:

Bray-Curtis dissimilarity

Taxonomic analysis:

 Relative abundance in phylum and genus levels

Statistical analysis

Alpha diversity and relative abundance

- <u>Normal distribution</u> = ANOVA followed by estimated marginal means (EMMEANS)
- <u>Non-normal distribution</u> = Kruskal-Wallis followed by Conover test
- Beta diversity
 - Betadisper followed by adonis function using vegan package in R

Results: Fecal microbiota

No significant difference observed in Shannon diversity (richness & evenness)

Alpha diversity: Chao1 index (richness only)

Chao 1 index was
 increased between
 d -7 and d 0 for all
 dietary treatments

Feces: Beta diversity

- Each point represent a sample
- Color and shape represent day sampled
- The farther the point is from another point, the more likely there is difference in microbial composition between the 2 points

Feces: Beta diversity

Treatment*Day interaction

- Facetted by sampling days
- Color and shape
 represent treatment

Feces: Phylum

- Firmicutes increased over time
- Bacteroidetes decreased over time
- Proteobacteria remained the same

Relative abundance: Phylum level

Feces: Phylum

Relative abundance: Phylum level

- Firmicutes increased over time
- Bacteroidetes decreased over time
- Proteobacteria remained the same

Feces: Genus

 Lactobacillus was greater in DFM than in AGP on d 0 and 21 PI

Relative abundance: Genus level

Results: Intestines

Alpha diversity: Intestinal sites

- Samples were collected on d 21 PI
- Shannon and Chao1 indices were greatest in colon

Intestines: Beta diversity

Beta diversity: Intestinal sites

Color and shape represent intestinal site (jejunum, ileum, or colon)

Intestines: Beta diversity

Intestines: Phylum

Relative abundance: Phylum level

- Actinobacteria was greater in ileal digesta from PC than from AGP
- Bacteroidetes was greater in AGP than in DFM in ileal digesta
- Proteobacteria was greater in AGP than in DFM in jejunal and ileal digesta

Intestines: Genus

 Lactobacillus and Bifidobacterium were greater in DFM than AGP and PC in jejunum, ileum, and colon on d 21 PI

Relative abundance: Genus level

Conclusion

- Age, intestinal sites, ETEC, and diet all contributed to the modulation of gut microbiota
- Carbadox supplementation increased relative abundance of gram-negative bacteria including Bacteroidetes and Proteobacteria
 - Could increase risk of antibiotics resistance
- B. subtilis supplementation was associated with increase of beneficial microbes in the intestinal microbiota of weaned pigs under ETEC challenge

B. amyloliquefaciens (BAM) supplementation on performance, systemic immunity, and intestinal microbiota of weaned pigs challenged with ETEC

Objective 2

Materials & methods

- 50 weaned pigs (7.41 ± 1.35 kg)
 - Around 21-24 day of age
- 5 treatments (10 pigs / treatment)

Sham (-)	CON -	Control diet		
	BAM -	0.10% inclusion rate with 10 ⁹ CFU/kg BAM		
ETEC (+)	CON +	Control diet		
	BAM +	0.10% inclusion rate with 10 ⁹ CFU/kg BAM		
	AGP +	50 mg/kg of Carbadox		

- to experimentation
- Ad libitum water and feed provided

Measurements

1. Growth performance

- Bodyweight
- Average daily gain (ADG)
- Average daily feed intake (ADFI)

3. Systemic immunity

Total and differential blood cell count

2. Diarrhea frequency

 Diarrhea score (1 = normal feces, 5 = watery diarrhea)

4. Fecal and ileal microbiota

- Alpha and beta diversity
- Relative abundance

Statistical analysis

PROC MIXED of SAS

- Randomized complete block design
- <u>Pig</u> as experimental unit
- Diet and challenge as main effect
- Block as random effect

Statistical analysis: Gut microbiota

- Alpha diversity and relative abundance
 - <u>Normal distribution</u> = ANOVA followed by estimated marginal means (EMMEANS)
 - <u>Non-normal distribution</u> = Kruskal-Wallis followed by Conover test
- Beta diversity
 - Betadisper followed by adonis function using vegan package in R

UCDAVIS

Growth performance

d0 to d21 Pl

P < 0.05

Frequency of diarrhea

DS = Diarrhea score

DS 1 = normal feces **DS 5 = watery diarrhea**

WBC counts

P < 0.05

Day Pl	SHAM (-)		ETEC (+)			
	CON	BAM	CON	BAM	AGP	
Lymphocyte, 10 ³ /µL						
0	4.86 b	4.75 ^b	5.23 ^b	6.31 ab	7.14 ^a	
7	5.28 b	6.21 ab	8.71 ^a	8.26 ^a	8.22 ^a	
21	5.59 b	5.63 b	7.30 ^a	5.36 b	6.79 ab	
Neutrophil, 10 ³ /µL						
14	7.62 ^b	7.22 b	9.49 ^a	7.92 b	7.27 b	
	ah	ah		bc		

Fecal microbiota

Beta diversity

Color and shape represent sampling day

Feces: Beta diversity

Treatment*Day

• AGP+ samples were clustered together

Feces: Phylum

Firmicutes decreased between d 0 and 7 PI in AGP+ Proteobacteria increased between d 0 and 7 PI in CON and AGP

Feces: Genus

- Lactobacillus was greater in CON+ than CON- on d 7 PI
- Blautia and Prevotella was greater in AGP+ than in BAM+ on d 0
- Prevotella was greater in BAM+ than AGP+ in d 21 PI

lleal microbiota

Alpha diversity (Shannon)

- Ileal digesta collected on d 21 PI
- CON+ and BAM+ had greater Shannon diversity index than AGP+ in ileum

Ileum: Beta diversity

Separated clusters in ETEC infected and non-infected treatment groups in ileal digesta

lleum: Phylum

- Firmicutes was greater in AGP+ than in CON+ and BAM+ in ileal digesta
- Proteobacteria was greater in CON+ than in CON-

lleum: Genus

- Lactobacillus was greater in CON- than in ETEC infected groups
- Clostridium sensu stricto
 1 was more abundant in
 AGP+ than BAM+ in ileal
 digesta

Conclusions

- *B. amyloliquefaciens* supplementation to weaned pigs challenged with ETEC
 - Tended to enhance growth performance
 - · Had limited effects on diarrhea
 - Reduced systemic inflammation
 - Altered fecal and ileal microbiota differently from carbadox supplementation
- B. amyloliquefaciens solely may not provide weaned pigs with growth enhancement and acute diarrheal alleviation as similarly as carbadox

Bacillus spp. can vary in how they are used how they impact different animal species

Acknowledgement

Major thanks

- Dr. Yanhong Liu
- QE committee
 - Dr. Timothy Hackmann
 - Dr. Annie King
 - Dr. Jennifer Larsen
 - Dr. David Mills
 - Dr. Xiang Yang
- Dissertation committee
 - Dr. Elizabeth Maga
 - Dr. Xiang Yang

Personal thanks

- Quu, Maru, Coco, Chacha (with distinction)
- My parents, family, and my friends
- Sidd

Research:

•

- Dr. Xunde Li
- Dr. Jennifer Chase
- Aaron Prinz
- David Gall
- UC Davis Bioinformatics
 Core
- Liu lab (project contributors):
 - Dr. Yijie He
 - Dr. Kwangwook Kim
 - Lauren Kovanda
 - Braden Wong
- Liu lab
 - Robert Hernandez
 - Sangwoo Park
 - Shuhan (Cynthia) Sun
 - Supatirada (Jane)
 Wongchania

Graduate coordinator

- Jennie Buse
- Special thanks
 - Dr. Peng Ji
- TA

Big thanks

- Dr. Edward DePeters
- Dr. Russ Hovey
- Dr. Elizabeth Maga
- Dr. Juan Medrano
- Dr. Michael Miller
- Dr. Pablo Ross
- Dr. Payam Vahmani

