Effects of oligosaccharide-based polymer on growth performance, diarrhea, and fecal β-hemolytic coliforms in weanling pigs experimentally infected with a pathogenic *E. coli*

Kwangwook Kim¹, Yijie He¹, Cynthia Jinno¹, Seijoo Yang¹, Xunde Li¹, David Bravo², Eric Cox³, and Yanhong Liu¹

¹University of California, Davis, CA, ²Pancosma|ADM, Rolle, Switzerland, ³Ghent University, Ghent, Belgium

Outline

Challenges in pig industry

In-feed antibiotics and potential alternatives

Research objective & methods

Results & conclusions

Weaning stress

- Environmental changes
 Transportation stress
- Abrupt transition of diet
 Increased exposure to pathogens

Post weaning diarrhea in pigs

- One of the most serious threats for the swine industry
- Usually associated with proliferation of enterotoxigenic E. coli (ETEC)
 - ✓ F4 (K88)
 - ✓ F18

Post-weaning *E. coli* diarrhea

Post-weaning *E. coli* diarrhea morbidity

Source: USDA, Swine 2012 Part III: Changes in the U.S. Swine Industry, 1995–2012

In-feed antibiotics

>Antimicrobial substances active against bacteria

- Growth promotion
- Disease prevention
- Disease treatment

Efficacy of antibiotics as growth promoters for weaned pigs (7-25 kg)

Zimmerman, 1986

Antibiotic resistance as a major public health concern

 Banned antibiotics as growth promoter in the E.U and U.S since 2006, and 2017, respectively

 Alternatives to antibiotic are highly demanded

Blood group A antigen oligosaccharides

- High correlation between blood group A antigen and F18 ETEC adherence on the small intestine of young pigs (Coddens et al., 2009; Patent US8703722B2)
- Blood group A antigen might disturb the toxin activity by interfering with ETEC binding to the receptors in the small intestine of pigs (Barra et al., 1992)

Hypothesis

The combination of blood group A antigen oligosaccharides and carrier may enhance disease resistance of pigs against F18 *E. coli* infection by inhibiting bacterial attachment

Research objective

To investigate dietary supplementation of oligosaccharide-based polymer on growth performance, diarrhea, and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a pathogenic F18 *E. coli.*

Experimental design & treatments

- Experimental design: RCBD (Blocks: BW x Sex)
- 48 weaning pigs (7.23 ± 1.11 kg BW, 21 d old)
- Treatment: 4 treatments (12 pigs/treatment)

Nursery basal diet as control (CON)

CON + 10 mg/kg of oligosaccharide-based polymer* (LOW)

CON + 20 mg/kg of oligosaccharide-based polymer* (HIGH)

CON + 50 mg/kg of antibiotics (Carbadox; AGP)

*Glycoconjugate composed of blood group A antigen oligosaccharides grafted on carrier and was designed and synthesized by Elicityl (France) in cooperation with Dr. Eric Cox (Ghent Univ., Belgium) and provided by Pancosma (Geneva, Switzerland)

Experimental timeline & data collection

- ➤ Pathogenic F18 *E. coli* challenge (LT, STb, Stx2e); *PI=post-inoculation oral inoculation, 10¹⁰ cfu/dose with 3 doses
- Growth performance
 - ✓ Body weight
 - ✓ Average daily gain
 - ✓ Average daily feed intake
 - √ Gain: Feed

- Diarrhea severity
 - ✓ Daily diarrhea score
 - ✓ Frequency of diarrhea
- All data were analyzed by ANOVA using the PROC MIXED of SAS

Body weight

Average daily feed intake

No differences in average daily gain among the treatments throughout the experiment

Gain:Feed

Frequency of diarrhea

β-hemolytic coliforms in feces

Conclusions

	Oligosaccharide -based polymer	Antibiotics
Feed efficiency	Enhanced	Enhanced
Diarrhea	Reduced	Reduced
β-hemolytic coliforms	Relatively high percentage	Relatively low percentage

Oligosaccharide-based polymer and antibiotics may have used different mechanisms to reduce diarrhea in weaned pigs infected with a pathogenic *E. coli*

Acknowledgement

Comparative Animal Nutrition & Physiology Laboratory University of California, Davis

Thank you for your attention!

