

Post-weaning diarrhea

possibly death Economical losses

Bacillus subtilis

al., 2019)

Commonly caused by

enterotoxigenic *E. coli* Often leads to weight loss and

PSII-15 - Dietary Supplementation of *Bacillus subtilis* Modified Intestinal Microbiome of Weaned Pigs Differently to Antibiotics

Cynthia Jinno¹, Yijie He¹, Yanhong Liu¹ ¹University of California, Davis CA

INTRODUCTION

 Potential alternatives to antibiotics
 Gram positive, aerobic bacteria
 Dietary supplementation of *B.* subtilis affected weaned pigs

challenged with F18 E. coli (Kim et

Improved growth rate

Enhanced gut barrier

Supplementation of *B. subtilis* alters

fecal microbiome of weaned pigs

Reduced leaky gut

MATERIALS & METHODS

- Animal experiment • 48 weaned pigs (~6.17 kg)
- Design: RCBD with BW x gender as blocking factors

Treatment (12 nigs per treatment)		
Sham	NC	Negative control
F18 <i>E. coli</i> challenge	PC	Positive control
	AGP	50 mg/kg carbadox
	DFM	500 mg/kg <i>B. subtilis</i>
		Soo mg/kg D. Subins

- Pigs were housed individually and had access to feed and water ad libitum for 28 days
- After 7 days adaptation period, pigs were orally inoculated with 3 mL F18 *E. coli* (10¹⁰ CFU/dose) for 3 consecutive days from d 0 post-inoculation (PI)
- Pigs were euthanized d 21 PI
 - Fecal samples and digesta from jejunum, ileum, and colon were collected

16S rRNA analysis

challenged with pathogenic *E. coli* (Jinno et al., 2020) • Fecal microbiome altered

function

differently between antibiotics and *B. subtilis* supplementation

OBJECTIVE

To observe the effects of supplementing *Bacillus subtilis* on intestinal microbiota of weaned pigs experimentally infected with F-18 *E. coli*.

- DNA extraction
- preparation

Analysis

- Amplification using PCR at the V4 region
 Illumina MiSeq 250PE
- sabre for demuliplexing
 QIIME2 (2019.4) for processing
- Data processing
 - R program for data visualization and statistical analysis
 - Alpha diversity
 - Beta diversity

data

Relative abundance

Statistical analysis

Alpha diversity and taxonomic analysis were analyzed with Kruskal-Wallis and Conover test using agricolae package in R.

Beta diversity

Relative abundance

CONCLUSION

- Supplementation of *B. subtilis* and carbadox modified intestinal microbiota of weaned pigs challenged with F18 *E. coli* differently from each other
- Further study should investigate the gut microbiome of weaned pigs challenged with F18 *E. coli* supplemented with *B. subtilis* using metagenomic sequencing

REFERENCES

- Kim, K., Y. He, X. Xiong, A. Ehrlich, X. Li, H. Raybould, E. R. Atwill, E. A. Maga, J. Jørgensen, and Y. Liu. 2019. Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected a pathogenic E. coli. J. Anim. Sci. Biotechnol. 10:52-63.
 Jinno, C., K. Kim, M. Song, P. Ji, E. Maga, and Y. Liu. 2019.
- Supplementation of Bacillus subtilis modified fecal microbiota of weaning pigs experimentally infected with a pathogenic E. coli. J. Anim. Sci. 97(Suppl_2):81