Effects of very low-dose antibiotics on gene expression profiles in ileal mucosa of weaned pigs infected with a pathogenic *E. coli*

Kwangwook Kim¹, Sungbong Jang², and Yanhong Liu¹

¹University of California, Davis, CA, ²University of Georgia, Athens, GA

<PSIV-11>

Background

- Antibiotics have been widely used as growth promoters and to treat the diarrhea disease caused by enterotoxigenic *Escherichia coli (E. coli)* in livestock production.
- As one of the biggest public health concerns, antibiotic resistance leads to tremendous economical losses and increased mortality of both humans and livestock.
- Potential antibiotic residue in food supply chain causes the selection of resistance genes in bacteria, which may lead to the failure of medical treatment in animal production.

Objective

To investigate the effect of very low-dose antibiotics on gene expression profile in ileal mucosa of weaned pigs experimentally infected with F18 *E. coli*.

Materials and methods

- Experimental design: RCBD (Blocks: BW x Sex)
- Low package: 5 PI (*pig*)-8 30
- Rec package: 2 PI-11 PI 50 mg/kg of antibiotics
- Statistical overrepresentation test was performed using Test type & correction: Binomial & Bonferroni correction
- LOW < 0.05 using Reference gene list:

Results

- Modulation of biological process in ileal mucosa of pigs challenged with F18 *E. coli*
- LOW VS. CON, d 11 PI
- REC VS. CON, d 11 PI

Conclusions

- Recommended-dose antibiotics enhanced disease resistance of pigs, as indicated by down-regulated the expression of genes involved in inflammatory response and response to stress.
- Very low-dose antibiotics adversely altered the expression of genes that are related to metabolic processes and immune responses.
- These observations support the adverse effects of very low-dose antibiotics on performance and overall health of weaned pigs infected with F18 *E. coli*.

References

Preliminary data

Supplementation of very low-dose antibiotics exacerbated growth performance and systemic inflammation of weaned pigs infected with a pathogenic *E. coli* (Kim et al., 2019a,b)