The objective of this study was to investigate the effects of supplementing *Bacillus subtilis* on fecal microbiota of pigs experimentally infected with F-18 *Escherichia coli* (*E. coli*), in comparison to carbadox. Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were individually housed and randomly allotted to one of four treatment (n =12): negative control (NC), positive control (PC), antibiotics (50 mg/kg of carbadox), and direct fed microbials (DFM, 500 mf/kg of *Bacillus subtilis*). The experiment lasted 28 days with 7 days before and 21 days after first *E. coli* inoculation (d 0). Pigs in the NC, PC, and DFM groups were orally inoculated with F18 *E. coli* for 3 consecutive days with 10 CFU/3 mL/dose. Fecal samples were collected on d -7 and 0 before *E. coli* inoculation, and d 7 and 21 post inoculation (PI). DNA were extracted from all fecal samples to perform 16S rRNA gene sequencing at the V4 hypervariable region. All data were analyzed with QIIME2 (2019.4) and R. Chao1 index was greatest (P < 0.05) in feces collected on d 0 before *E. coli* inoculation and lowest (P < 0.05) on d -7 feces. Pigs supplemented with DFM had lower (P < 0.05) Chao1 index than pigs fed with antibiotics on d 21 PI. Bray-Curtis PCoA displayed separate clusters among days but overlaps among treatments. Bacteroidetes and Proteobacteria were most (P < 0.05) abundant on d -7 and lowest (P < 0.05) on d 21 PI. However, Actinobacteria and Firmicutes were most (P < 0.05) abundant on d 21 PI. Pigs in the NC and DFM groups had greater (P < 0.05) relative abundance of Firmicutes than pigs fed with antibiotics on d 0 and 7. Supplementation of antibiotics reduced (P < 0.05) the relative abundance of *Lactobacillaceae* compared with other treatments on d 0 PI. In conclusion, both animal age and dietary treatments influenced the fecal microbiome of weaned pigs.
INTRODUCTION

- Enterotoxigenic *E. coli*
 - Common type of *E. coli* that causes post-weaning diarrhea
- Post-weaning diarrhea
 - Can be induced by stress, sudden change in diet, increased exposure to enterotoxigenic pathogens
 - Often leads to weight loss and possibly death
 - Economical losses
- Probiotics
 - Live microorganisms confer a health benefit on host when administered in adequate amounts (UNFAO/WHO 2001)
 - Potential alternatives to antibiotics
- *Bacillus subtilis*
 - Gram positive, aerobic bacteria
 - Stable in ambient temperature
 - Spores resistant to harsh environment

SUPPLEMENTATION OF B. SUBTILIS TO WEANED PIGS

- Dietary supplementation of *B. subtilis* affected weaned pigs challenged with F18 *E. coli* (Kim et al., 2019)
 - Improved growth rate
 - Reduced leaky gut
 - Enhanced gut barrier function

WHY LOOK INTO MICROBIOTA?

- Gut microbiota = collection of microbe living inside the gut
- Microbes in intestines play a role in keeping the host health
 - Nutrition: produce VFAs
 - Physiology: maintain gut structure and barrier function
 - Immune system: slgA regulation

OBJECTIVE

To observe the effects of supplementing *Bacillus subtilis* on fecal microbiota of pigs experimentally infected with F-18 *Escherichia coli*.
Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

Step 1: Animal experiment

Pigs
- 48 weanling pigs
- Average BW 6.17 kg
- Weaned at 21 d of age into 3 confined nursery rooms
- Pigs are individually housed and had access to feed and water *ad libitum*

Treatment
- 12 pigs per treatment
 - Negative control (NC): nursery basal diet not infected with *E. coli*
 - Positive control (PC): nursery basal diet infected with *E. coli*
 - Antibiotics (AGP): 50 mg/kg carboadox
 - Directed fed microbials (DFM): 500 mg/kg *Bacillus subtilis*

Design
- Randomized complete block design
- Blocking factors: BW x gender

Step 2: 16S rRNA Sequencing: Library preparation

DNA extraction
- Zymo Research miniprep kit

PCR
- Amplified at V4 hypervariable region (primers 806R & 515F with 8 bp barcode and Illumina adapter on the 5' end)
- Samples pooled after PCR
- Purified with Qiagen purification kit

Sequencing
- Illumina MiSeq platform
- 250bp paired-end sequencing
- Sequencing outputs were in Fastq files

Step 3: Downstream analysis

Fastq files
- Illumina adapter already removed

Demux
- Same
- - Create subfolders separated by barcode number and remove barcode sequences

Trim/filter
- Same
- - Trim off primers and low-quality regions of sequence (denoise)

DADA2
- Same
- - DADA2 (Silva 132 99% nb classifier)

Generate output files
- Count table
- Tree file
- Taxonomy file

Metadata

Analysis
- Phyloseq, vegan, ggplot2, etc.

- Alpha diversity
- Beta diversity
- Taxonomic analysis

RESULTS AND CONCLUSION

Statistical analysis using R.

Chao1 index and taxonomic analysis were analyzed with Kruskal-Wallis and Conover test using agricolae package.

Shannon index was analyzed using ANOVA and emmeans package.

Beta diversity was analyzed with Adonis and beladipper function using vegan (v. 2.5-4) & palmetto/Adonis packages.
Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

RESULTS

Pairwise Adonis [Day] with $P < 0.05$

<table>
<thead>
<tr>
<th>Day</th>
<th>Pairs</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>F.Model</th>
<th>R²</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d 0</td>
<td>PC vs AGP</td>
<td>1</td>
<td>0.51</td>
<td>1.93</td>
<td>0.14</td>
<td>0.014</td>
</tr>
<tr>
<td>AGP vs DFM</td>
<td>1</td>
<td>0.50</td>
<td>1.82</td>
<td>0.14</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>AGP vs NC</td>
<td>1</td>
<td>0.69</td>
<td>2.59</td>
<td>0.18</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>d 7</td>
<td>PC vs NC</td>
<td>1</td>
<td>0.38</td>
<td>1.85</td>
<td>0.08</td>
<td>0.007</td>
</tr>
<tr>
<td>AGP vs NC</td>
<td>1</td>
<td>0.47</td>
<td>2.00</td>
<td>0.09</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>DFM vs NC</td>
<td>1</td>
<td>0.39</td>
<td>1.81</td>
<td>0.08</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>d 21</td>
<td>PC vs AGP</td>
<td>1</td>
<td>0.60</td>
<td>2.21</td>
<td>0.12</td>
<td>0.016</td>
</tr>
<tr>
<td>AGP vs DFM</td>
<td>1</td>
<td>0.80</td>
<td>3.15</td>
<td>0.14</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>AGP vs NC</td>
<td>1</td>
<td>0.69</td>
<td>2.72</td>
<td>0.13</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>DFM vs NC</td>
<td>1</td>
<td>0.42</td>
<td>1.87</td>
<td>0.08</td>
<td>0.017</td>
<td></td>
</tr>
</tbody>
</table>

ABSTRACT

Title: Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Authors: Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

Abstract: The study aimed to investigate the effects of dietary supplementation of *Bacillus subtilis* on the fecal microbiome of weaned pigs compared to antibiotics. The results showed significant modifications in the microbiome profile, indicating potential benefits of this supplementation strategy. Further research is needed to understand the underlying mechanisms and long-term effects on health and production.
Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

RELATIVE ABUNDANCE

- **Phylum**
 - *P < 0.05*

- **Bacteroidetes family**
 - *P < 0.05*

SEQUENCE SUMMARY

- Number of taxa: 3430 species
- Sample sequencing depth

RELATIVE ABUNDANCE

- **Firmicutes family**
 - *P < 0.05*

CONCLUSIONS

- Supplementation of *Bacillus subtilis* alters the fecal microbiome of weaned pigs challenged with pathogenic *E. coli*
- Fecal microbiome altered differently when supplementing *B. subtilis* and antibiotics to weaned pigs
- Further analysis will evaluate the metagenomic of the microbiota of weaned pigs supplemented with *Bacillus subtilis*

REFERENCES

Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

RESULTS AND CONCLUSION

Phyla

$P < 0.05$

Phylum

- Actinobacteria
- Spirochaetes
- Proteobacteria
- Bacteroidetes
- Firmicutes

<table>
<thead>
<tr>
<th>Phylum</th>
<th>NC</th>
<th>PC</th>
<th>AGP</th>
<th>DFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinobacteria</td>
<td>ab</td>
<td>a</td>
<td>abc</td>
<td>bcd</td>
</tr>
<tr>
<td>Spirochaetes</td>
<td>e</td>
<td>e</td>
<td>de</td>
<td>e</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>abc</td>
<td>bcd</td>
<td>de</td>
<td>d</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>a</td>
<td>a</td>
<td>abc</td>
<td>cd</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>a</td>
<td>a</td>
<td>abc</td>
<td>cd</td>
</tr>
</tbody>
</table>

Phyla

- *Firmicutes*
- *Bacteroidetes*

<table>
<thead>
<tr>
<th>Phylum</th>
<th>NC</th>
<th>PC</th>
<th>AGP</th>
<th>DFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmicutes</td>
<td>ab</td>
<td>a</td>
<td>abc</td>
<td>bcd</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>e</td>
<td>e</td>
<td>de</td>
<td>e</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>abc</td>
<td>bcd</td>
<td>de</td>
<td>d</td>
</tr>
<tr>
<td>Spirochaetes</td>
<td>a</td>
<td>a</td>
<td>abc</td>
<td>cd</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>a</td>
<td>a</td>
<td>abc</td>
<td>cd</td>
</tr>
</tbody>
</table>

Results

- Phyla and family comparisons at different time points (d7, d14, d21).
- Statistical significance indicated by letters (a, b, c, d, e, f, g).

Conclusion

Further research is needed to understand the long-term effects of *Bacillus subtilis* supplementation on the microbiome and health outcomes of weaned pigs.
Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

Cynthia N. Jinno¹, Yijie He¹, Xunde Li¹, and Yanhong Liu¹

¹University of California, Davis, CA

Results and Conclusion

Firmicutes family

P < 0.05
Dietary supplementation of *Bacillus subtilis* modified fecal microbiome of weaned pigs in comparison to antibiotics

*Cynthia N. Jinno*¹, *Yijie He*¹, *Xunde Li*¹, and *Yanhong Liu*¹

¹University of California, Davis, CA

RESULTS AND CONCLUSION

BACTEROIDETES FAMILY

P *< 0.05*

Bacteroidetes family