New research into plant-based feed additives

Yanhong Liu & Kwangwook Kim

Department of Animal Science University of California, Davis, CA

November 15, 2019

Outline

- Weaning stress on intestinal development and health of pigs
- How to define a healthy gut
- Plant-based feed additives
 - Phytochemicals
 - Algae-derived products
- Take home message

Focus on the GUT

- Digestion and absorption of nutrients
- Physical barrier against pathogenic agents
- Large immune organ
- Nutrient chemo-sensing

MacDonald and Monteleone, 2005

Focus on the GUT of weaning pigs

Weaning stress

- Maternal separation
- Environmental change
- Increased exposure to pathogens
- Social hierarchy stress
- Move to solid feed
- Transportation stress

Weaning stress on intestinal morphology

d1

d7

d14

d21

- Pre-weaning: d 1 to 21, villi surface was increased
- Post-weaning: reduced villi number and folding

Wang et al., 2016

Weaning stress on intestinal barrier function

Neunlist et al., 2013; Wang et al., 2016

Weaning stress on intestinal barrier function, cont.

Wang et al., 2016

Weaning stress on intestinal mucosal immunity

- Weaning induces a transient gut inflammation in pigs
 - Enhanced pro-inflammatory cytokines
 - Increased intestinal CD4+ and CD8+ T lymphocytes
 - Up-regulated matrix metalloproteinase
 - Down-regulated MHC I expression
 - Reduced secretory IgA

Weaning stress on intestinal oxidative status

Yin et al., 2014

Focus on the GUT of weaning pigs

How to define a healthy gut

- Effective nutrient digestion and absorption
- Effective waste excretion
- A Overall, should be concomitant with optimal performance

absence of diseases)

- A functional and protective gut immunity
- A minimal activation of stress/neural pathways

Pluske et al., 2018

1

Nutritional strategies

- Optimization of feed formulation
- Utilization of low protein diet in postweaning period
- Enhancement of feed processing and manufacturing
- Supplementation of feed additives

Feed additives

- Improvement of nutrient digestion and absorption (i.e. exogenous enzymes)
- Regulation of gut microbiota to more favorable bacterial species (i.e. prebiotics & probiotics)
- Immune modulation to enhance disease resistance of weaned pigs (i.e. β-glucan, phytochemicals)

Plant-based feed additives

Phytochemicals

Phytochemicals - plant extracts

- Extracted from parts of plants or synthesized
- Concentrated, hydrophobic, volatile aroma
- Mixtures of secondary plant metabolites
- Liquid or powder
- Phenolic compounds

Anti-inflammatory effects - In vitro

LPS-stimulated porcine alveolar macrophages

Liu et al., 2012

Frequency of diarrhea

1, normal; 5, watery diarrhea

Liu et al., 2013

Possible mechanisms for reduced diarrhea

Possibly improved gut barrier function!

**P* < 0.05 Liu et al., 2013, 2014

Plant extracts reduced systemic inflammation caused by *E. coli* infection

Plant extracts reduced gut inflammation caused by *E. coli* infection

Plant extracts reduced gut inflammation caused by *E. coli* infection

Liu et al., 2014

Summary Anti-inflammatory effects of plant extracts

- Suppressed the production of inflammatory mediators in vitro
- Reduced diarrhea and enhanced disease resistance of weaning pigs
- Possible mechanisms
 - Gut barrier function
 - Gut mucosa immunity
 - Systemic immunity
 - Reduced oxidative stress ?
 - Modified gut microbiome ?

β-glucan

- Heterogeneous group
 of polysaccharides
- Naturally present in cereal grains, fungi, yeast, seaweed, and algae

β-glucan type	Structure	Description
Bacterial		Linear β1,3 glucan (i.e.Curdlan)
Fungal		Short β1,6 branched, β1,3 glucan (i.e. Schizophyllan)
Yeast		Long β1,6 branched, β1,3 glucan (i.e. WGP β-glucan, Betafectin™)
Cereal		Linear β1,3/β1,4-glucan (i.e. oat, barley, rye)

Volman et al., 2008

Algae-derived β-glucan

- Extracted from algae *Euglena gracilis,* a freshwater species of single-celled alga
- Linked by (1,3)-glycosidic bonds and categorized as paramylon
- β-glucan from algae *Euglena gracilis* strongly stimulated porcine leukocytes in vitro

Sonck et al., 2010

Daily diarrhea score

Low = 54 mg/kg β-glucan in Control; High = 108 mg/kg β-glucan in Control Diarrhea score: 1, normal feces, 2, moist feces, 3, mild diarrhea, 4, severe diarrhea, 5, watery diarrhea

Kim et al., 2019

Transcellular permeability

High = 108 mg/kg β-glucan in Control

Kim et al., 2019

Tight junction protein Gene expression in jejunal mucosa, d 12 PI

Low = 54 mg/kg β -glucan in Control; High = 108 mg/kg β -glucan in Control

Kim et al., 2019

Intestinal immunity Gene expression in ileal mucosa, d 12 PI

Low = 54 mg/kg β -glucan in Control; High = 108 mg/kg β -glucan in Control

Kim et al., 2019

Serum cortisol and haptoglobin

Low = 54 mg/kg β -glucan in Control; High = 108 mg/kg β -glucan in Control

Kim et al., 2019

Protective effects of algae-derived β-glucan

- Dietary supplementation of 108 mg/kg of algae-derived βglucan alleviated diarrhea of F18 *E. coli* infected pigs
 - Enhanced gut integrity
 - Boosted host immune response
 - Stimulated T-cell activation

Acknowledgements

Graduate students

- Kwangwook Kim
- Yijie He
- Cynthia Jinno
- Lauren Kovanda
- Braden Wong
- Monika Hejna

University of Illinois

Dr. James Pettigrew

•

WIFSS

Western Institute for Food Safety & Security

WIFSS at UC Davis

• Dr. Xunde Li

http://animalnutr-ansci.faculty.ucdavis.edu/

