Dietary Bacillus subtilis enhances disease resistance and intestinal health of weaned pigs

Yijie He,¹ Kwangwook Kim,¹ Lauren Kovanda,¹ Cynthia Jinno,¹ Minho Song,² Xunde Li,³ and Yanhong Liu¹

Introduction

- □Enterotoxigenic *Escherichia coli* (ETEC) is the most common pathotype that causes diarrhea in postweaning piglets.
- □Supplementation of *Bacillus spp.* probiotics reduces incidence of diarrhea and improves growth performance of post-weaning pigs (Bhandari et al., 2008; Hu et al., 2014).
- □ Probiotics reduced incidence of diarrhea, improved gut barrier integrity, and reduced systemic inflammation of weaned pigs (Kim et al., 2019).

Objective

□To investigate the effects of supplementation of *Bacillus spp.* probiotics on the growth performance, diarrhea, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic F18 *E. coli*

Materials and Methods

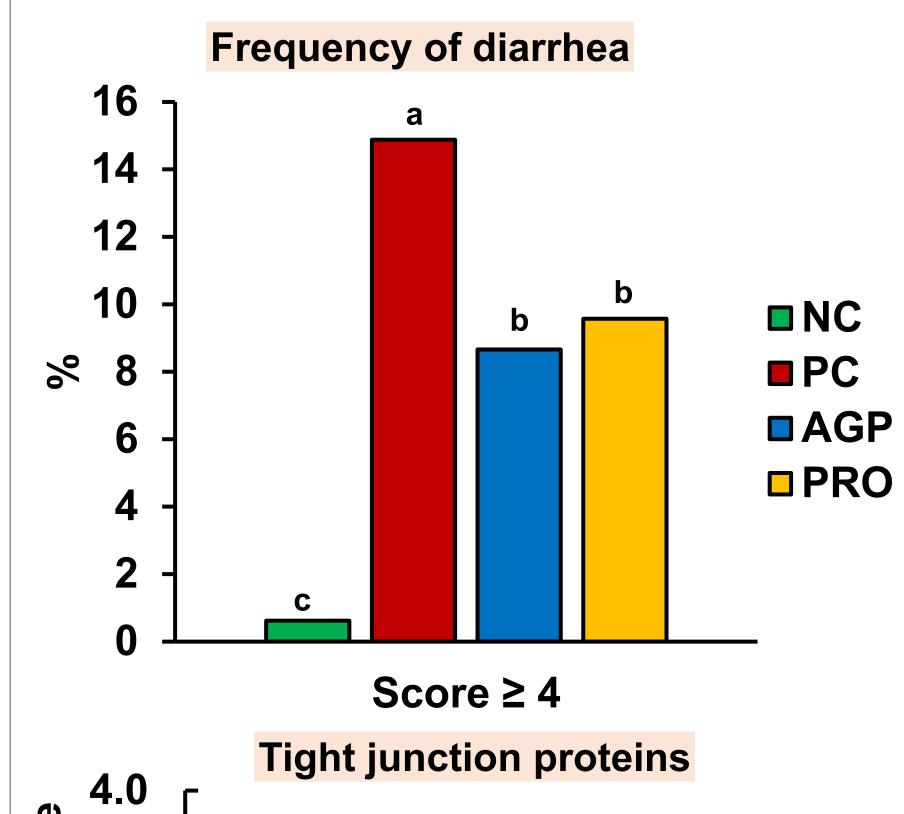
- ☐ Animals: 48 weanling pigs (21 day, 6.17 ± 0.36 kg)
- ☐ F18 *E. coli* challenge
 - ❖ Enterotoxigenic F18 E. coli (LT, STb, SLT-2)
 - **❖** Oral inoculation, 10¹⁰ cfu/dose with 3 doses

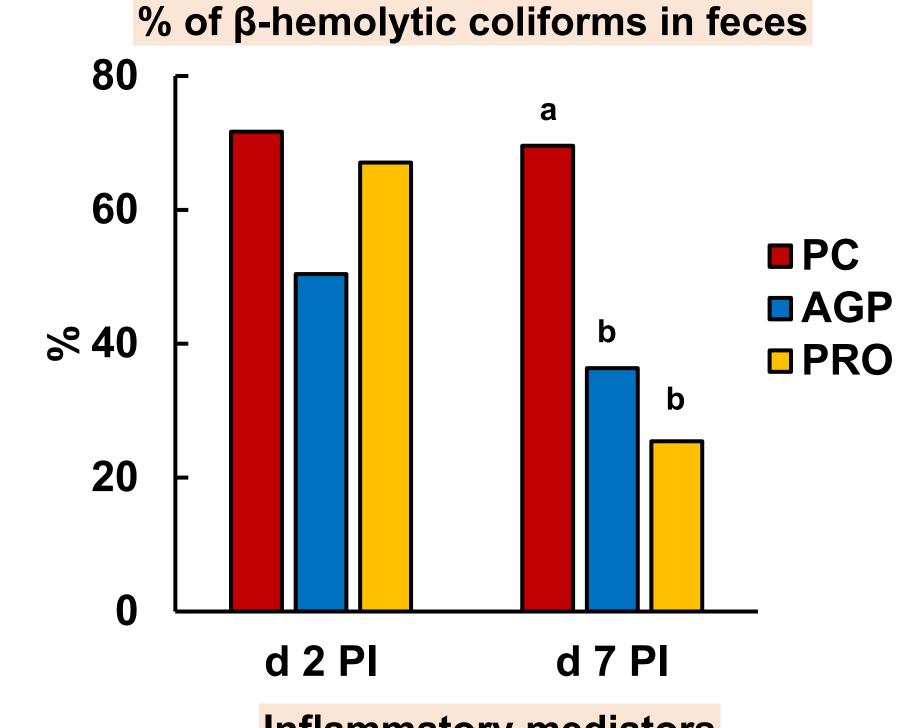
☐ Experimental design

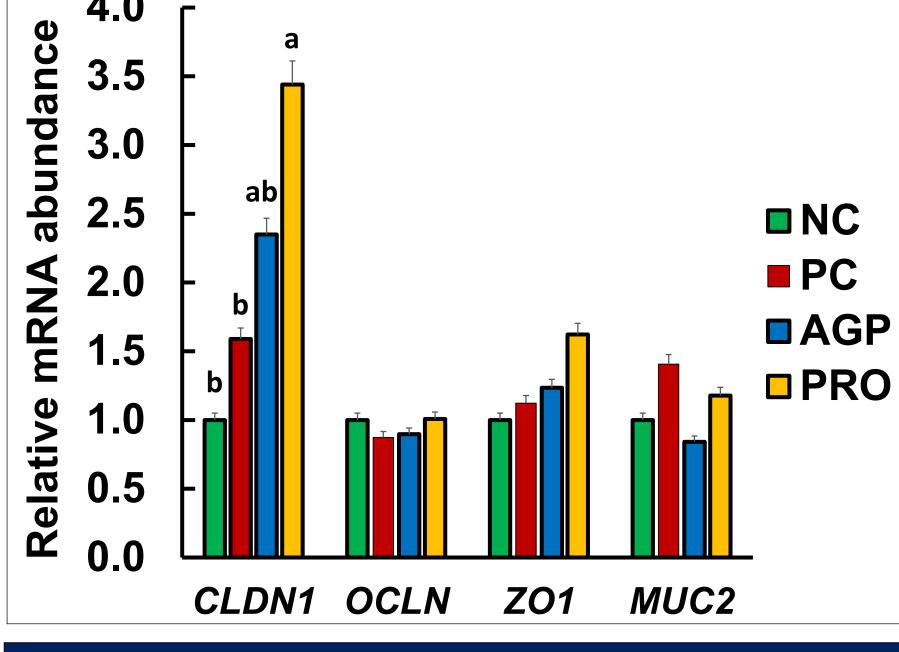
- * Randomized Complete Block Design
- ❖ Blocking factors: body weight x gender
- **❖** Experimental period: 28 days, 7-day adaptation and 21-day after first *E. coli* inoculation
- ☐ Dietary treatments: 12 pigs/treatment
 - ❖ Nursery basal diet without *E. coli* challenge (NC)
 - ❖ Nursery basal diet with *E. coli* challenge (PC)
 - ❖ PC + 50 mg/kg carbadox (AGP)
 - ❖ PC + 500 mg/kg Bacillus spp. (PRO)

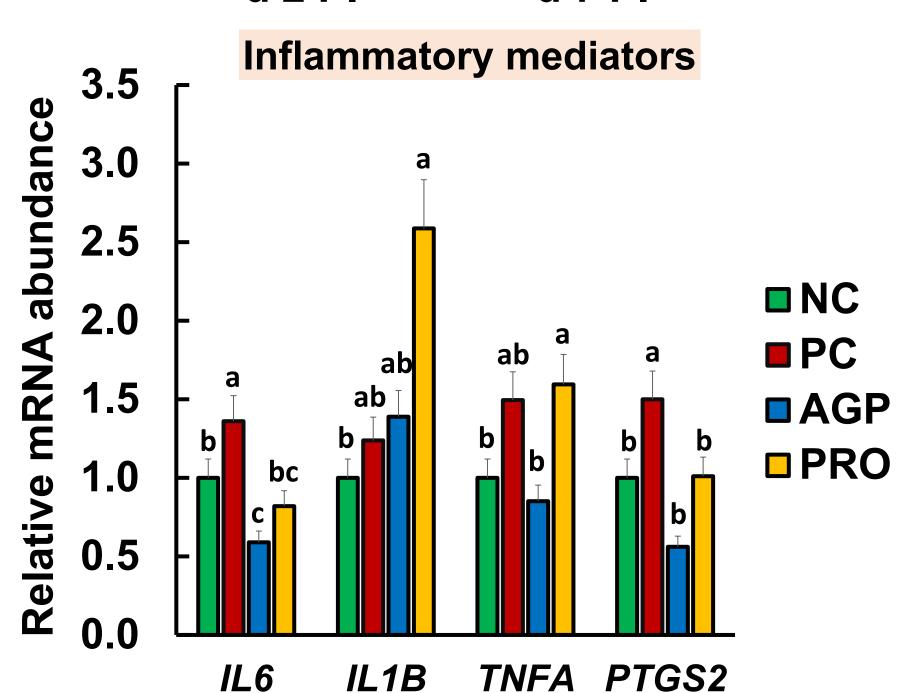
□ Data collection

- Growth performance: body weight, average daily gain, average daily feed intake, Gain:Feed
- ❖ β-hemolytic coliforms in feces: d 0 before inoculation and d 3, 7, 14, and 21 post-inoculation (PI)
- ❖ Daily diarrhea score: ranging from 1 to 5 (1, normal feces and 5, watery diarrhea)
- **❖Jejunal mucosa: mRNA expression of tight junction proteins [claudin 1 (***CLDN1***), Occludin (***OCLN***), Zonula occludens-1 (***ZO1***), mucin 2 (***MUC2***)**]
- ❖lleal mucosa: mRNA expression of inflammatory mediators [/L1B, /L6, TNFA, cyclooxygenase 2 (PTGS2)]


□ Data analysis


- * PROC MIXED of SAS
- **❖** Diet as the main effect and blocks as random effects
- Experimental unit: pig


Results


Table 1. Growth performance of weaned pigs

Item	NC	PC	AGP	PRO	SEM	<i>P</i> -value
Body weight, kg						
d 0 PI	7.03	7.17	7.28	7.04	0.43	0.78
d 7 PI	8.78 ^b	8.53 ^b	9.80 ^a	8.56 ^b	0.48	<0.05
d 14 PI	12.55 ^{ab}	10.56 ^c	13.84 ^a	12.07 ^{bc}	0.70	<0.05
d 21 PI	17.23 ^{ab}	13.69 ^c	18.79 ^a	16.46 ^b	0.99	<0.01
Average daily gain, g						
d 0 to 7 PI	250 ^b	212 ^b	359a	218 ^b	28.5	<0.01
d 7 to 14 PI	540 ^{ab}	459 ^b	594 ^a	501 ^{ab}	52.7	0.08
d 14 to 21 PI	668 ^a	466 ^b	718 ^a	628 ^a	44.2	<0.01
d 0 to 21 PI	486 ^{ab}	347 ^c	558a	449 ^b	36.0	<0.01
Average daily feed intake, g						
d 0 to 7 PI	374 ^b	435 ^{ab}	497 ^a	403 ^b	22.6	<0.05
d 7 to 14 PI	746 ^{ab}	687 ^b	895 ^a	751 ^{ab}	66.4	0.10
d 14 to 21 PI	1,070 ^b	822 ^c	1,306a	1,029 ^b	76.6	<0.01
d 0 to 21 PI	730 ^b	647 ^b	899 ^a	728 ^b	57.5	<0.01
Gain:Feed						
d 0 to 7 PI	0.68 ^{ab}	0.49 ^c	0.73 ^a	0.54 ^{bc}	0.059	<0.05
d 7 to 14 PI	0.72 ^a	0.59 ^b	0.68 ^{ab}	0.67 ^{ab}	0.039	0.07
d 14 to 21 PI	0.62	0.61	0.56	0.61	0.030	0.50
d 0 to 21 PI	0.66a	0.53 ^b	0.63 ^a	0.62 ^a	0.023	<0.01

Conclusions

- ☐ Supplementation of *Bacillus subtilis* in pig feed
 - Improved growth performance and disease resistance
 - Alleviated diarrhea, reduced intestinal inflammation, and enhanced gut barrier function

References

Bhandari, S. K., Xu, B., Nyachoti, C. M., Giesting, D. W., and Krause, D. O. 2008. Evaluation of alternatives to antibiotics using an *Escherichia coli* K88+ model of piglet diarrhea: Effects on gut microbial ecology. Journal of Animal Scienc. 86:836-847.

Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N., and Liang, Y. 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and fecal bacterial flora of weaned piglets. Asian-Australasian Journal of Animal Sciences. 27:1131-1140.

Kim, K., He, Y., Xiong, X., Ehrlich, A., Li, X., Raybould, H., Atwill, E., Maga, E., Jorgensen, J., and Liu, Y. 2019. Dietary supplementation of *Bacillus subtilis* influenced intestinal health of weaned pigs experimentally infected with a pathogenic *E. coli*. Journal of Animal Science and Biotechnology. 10:52-63.

This research was supported by the National Pork Board grant #18-081