

ASN19: FS04-01-19

INTRODUCTION & HYPOTHESIS

- In the US, prophylactic iron supplementation is commonly practiced at 4 – 6 months of age without screening test of iron status of the infants.
- Preterm infants and infants born small for gestational age receive iron therapy shortly after birth to compensate for low iron store during gestation.
- The optimal dose of iron supplement or therapeutic iron is unclear, and there is an emerging concern over the potential adverse effects of iron over-supplementation during infancy. (Hare et al., Lancet Child Adolesc Health, 2018)
- We used a nursing piglet model to assess the effects of dietary iron excess on iron metabolism and systemic iron homeostasis.

MATERIALS & METHODS

- **EXPERIMENTAL DESIGN:**
- \checkmark Twelve piglets with normal birth weight (BW = 2.06 kg on PD2) were randomly assigned to high (AGAH) or low iron (AGAL) treatment on PD2. Eight piglets with low birth weight (BW = 1.18) kg on PD2) were assigned to high iron treatment (SGAH) on PD2.
- \checkmark Iron (ferrous sulfate drops) were give by oral gavage daily.

AGAH (n=6): normal birth weight, oral iron (15 mg /d·kg BW) AGAL (n=6): normal birth weight, oral iron (1 mg /d·kg BW) SGAH (n=8): Low birth weight, oral iron (15 mg /d·kg BW)

• ANALYSES

- **Tissue and plasma iron: Atomic** absorption spectrometry
- **Transferrin saturation: TIBC kit (Pointe** Scientific)
- Gene and protein expression: RT-qPCR and western blot
- **Primary Ab: Ferroportin & DMT1 (Novus Biologicals); H-ferritin (Abcam)**

P-value Trt < 0.001 Day < 0.001 kg T×D = 0.86 **200** aight, 180-- 3 Body 140-AGAH 후 120-AGAL 🛨 SGAH 13 16 21 10 Postnatal Day

RESULTS

Duodenal ferroportin expression in nursing piglets is unresponsive to dietary iron excess

Nicole Doan, Yining Wang, Eric Nonnecke, Bo Lönnerdal, and Peng Ji* Department of Nutrition, University of California Davis (penji@ucdavis.edu)

High iron supplement liver and duodenum, and increased Tf saturation and plasma iron on PD21

<section-header><section-header><section-header><section-header><section-header><section-header><text>

duodenal mucosa (DM)

High oral iron supplementation increased hemoglobin and hematocrit. However, pigs in AGAL still maintained iron replete status on PD21.

RESULTS

CONCLUSIONS

- Dietary iron excess resulted in hepatic iron overload, high transferrin saturation and increased plasma iron concentration in nursing piglets.
- Despite drastic induction of the mRNA expression of hepcidin in the liver, protein expression of ferroportin in the duodenal mucosa was not reduced, but increased by iron over-supplementation.
- The unresponsiveness of ferroprotin to hepcidin-induced degradation may contribute to iron efflux to blood circulation. increase of Tf saturation and liver iron overload in nursing piglets

