

Dietary spray dried plasma on systemic immune responses of lactating sows and their litters

Sheena Kim¹, Byeonghyeon Kim¹, Junsu Kim¹, Kwangwook Kim², Jeong Jae Lee¹, Joowon Kang¹, Daye Mun¹, Jangryeol Baek¹, Soyun Kim¹, Yanhong Liu², Jeehwan Choe¹, and Minho Song¹

¹Chungnam National University, Daejeon, Republic of Korea, ²University of California, Davis, CA, USA

INTRODUCTION

- Spray dried plasma
- Modulation gut microbiota and host immune responses
- High bioavailable source: essential amino acids, minerals
- Various physiological components
- : immunoglobulins, glycoproteins, peptides, unknown growth factors
- Immature immune system of young pigs
- Change in adaptive immunity: immunity gap
- Commonly used in early nursery diets
- Improvement of reproductive performance
 BW change, litters size & growth
- ❖ However, limited information for dietary SDP on immune responses of sows and their litters.

OBJECTIVE

❖ To investigate the effects of spray dried plasma (SDP) in last gestating and lactating diets on systemic immune responses of lactating sows and their litters.

MATERIALS AND METHODS

- Experimental design: completely randomized design
- Animals: 12 sows (227 ± 1.64 kg BW; 2.0 parity) and their litters
- Dietary treatments: sows
- Corn and soybean meal basal diet (CON)
- CON + 1% spray dried plasma (SDP)

ltem	Gestation		Lactation	
	CON	SDP	CON	SDP
Ingredients, %				
Corn	75.82	76.72	65.54	66.53
SBM, 45%	21.30	19.40	31.81	29.82
Spray dried plasma	_	1.00	_	1.00
Others ¹	2.88	2.88	2.65	2.65
Calculated values				
ME, kcal/kg	3,320	3,320	3,430	3,430
CP, %	15.86	15.82	19.76	19.72

- Weaned pigs
 - Group housed by dietary treatments of sows
 - One nursery diet (ME 3,400 kcal/kg, CP 20.5%)
- Experimental period
- d 30 before farrowing until weaning (58 days)
- Piglets were tracked until 6 wk post weaning
- Blood collection
- 6 sows per dietary treatment
- Randomly selected 2 piglets from each sow per dietary treatment
- Measurements
- Serum tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), C-reactive protein (CRP), cortisol, and immunoglobulin (Ig)G, M, and A from sows and their litters

- ❖ Statistical analysis: PROC GLM procedure of SAS
 - Experimental unit: pen
 - Model: dietary treatment for sows

RESULTS

REFERENCES

- Crenshaw, J. D., R. D. Boyd, J. M. Campbell, L. E. Russell, R. L. Moser, and M. E. Wilson. 2007. Lactation feed disappearance and weaning to estrus interval for sows fed spray-dried plasma. J. Anim. Sci. 85:3442–3453.
- Moretó, M., and A. Pérez-Bosque. 2009. Dietary plasma proteins, the intestinal immune system, and the barrier function of the intestinal mucosa. J. Anim. Sci. 87:E92–E100.

CONCLUSION

❖ Supplementation of dietary spray dried plasma in last gestating and lactating diets may modulate systemic immune responses of sows and their litters.