

## Early-life iron excess causes iron overload and enhances purine degradation via activation of xanthine oxidase in developing hippocampus in a nursing piglet model Peng Ji\*, Eric Nonnecke, Bo Lönnerdal, Kwangwook Kim, Cynthia Jinno

Abstract: 224

## **INTRODUCTION & HYPOTHESIS**

- In many developed countries, prophylactic iron (supplements and fortified formula) is commonly given to infants older than 4–6 months without a screening test for iron status.
- **Recent study showed that iron regulatory mechanism (hepcidin** ferroportin axis) is not functionally mature in suckling mouse pups (Frazer et al., 2017).
- There is a growing concern over the neurological effects of dietary iron overexposure in iron-replete infants (Hare et al., 2018).
- Nursing piglet is a promising preclinical model to investigate the impact of iron overload on neurodevelopment and cognitive function in infants.
- We hypothesize that iron over-supplementation causes iron overload, alters hippocampal metabolome and affects sociability in nursing piglets

### **MATERIALS & METHODS**

**EXPERIMENTAL DESIGN:** Twenty-four newborn piglets were randomly assigned to treatments from postnatal day 2 to 21. Piglets were nursed by sow throughout the study. **Treatments:** 



• ANALYSES

- ✓ Tissue iron: Atomic absorption spectrometry
- ✓ Non-targeted metabolomics (HIG vs. NON): GC-TOF MS for
- primary metabolites (West Coast Metabolomics Center, NIH)
- ✓ Gene and protein expression: RT-qPCR and western blot
- ✓ Activity of xanthine oxidase: ELISA (Cayman Chemical)
- ✓ Behavioral analysis: EthoVision XT (Noldus)

### RESULTS

 Excess iron did not affect growth nor cause infection in nursing pigs.

| D              | 7.0 P-value<br>6.0 Trt = 0.84<br>5.0 Day < 0.001<br>$T \times D = 0.99$ |                                                                      | ပ         | <b>40.0</b> ]_IF _ TI |               |   |      |                                     |  |
|----------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|-----------------------|---------------|---|------|-------------------------------------|--|
| Body weight, k |                                                                         |                                                                      | iture, °( | 39.0-                 |               |   |      |                                     |  |
|                | 3.0-<br>2.0-<br>1.0-                                                    | <ul> <li>NON</li> <li>■ CON</li> <li>■ MOD</li> <li>■ HIG</li> </ul> | Tempera   | 38.0-                 |               | Ţ | ±    | P-valu<br>Trt = (<br>Day <<br>TxD = |  |
|                | 0.0 + + + + + + + + + + + + + + + + + +                                 | 18 21 24                                                             |           | 37.0∔<br>0            | 3             | 6 | 9 12 | 2 15 18                             |  |
|                | Postnatal Day                                                           |                                                                      |           |                       | Postnatal Day |   |      |                                     |  |

# RESULTS

- Excess iron resulted in iron overload in the liver and hippocampus.
- The hippocampal iron content positively correlated with the hepatic iron.



Excess iron altered mRNA and protein expression of iron regulatory proteins.





(21)20





**Department of Nutrition, University of California Davis** 





conspecifics





100-

NON





### RESULTS

### Excess iron increased purine degradation and enhanced mRNA and activity of xanthine oxidase in the hippocampus (q < 0.2).

- **Dietary Iron overexposure caused iron overload**
- Hippocampal iron overload shifted purine flux towards degradation via activation of xanthine oxidase, which may contribute to the increased of lipid peroxidation.
- Iron overload impaired myelination in the MBP 22 kDa \_\_\_\_\_ hippocampus and diminished interaction with social novelty