Nutritional intervention for the intestinal development and health of weaned pigs

Yanhong Liu

Department of Animal Science University of California, Davis, CA

DSM Science & Technology Award Symposium UCDAVIS

Outline

- Weaning stress on intestinal development and health
- How to define a healthy gut
- Nutritional intervention
 - Functional amino acids
 - Short chain fatty acids
- Take home message

Focus on the GUT

- Digestion and absorption of nutrients
- Physical barrier against pathogenic agents
- Large immune organ
- Nutrient chemo-sensing

Focus on the GUT of weaning pigs

Weaning stress

- Maternal separation
- Environmental change
- Increased exposure to pathogens
- Social hierarchy stress
- Move to solid feed
- Transportation stress

Weaning stress on intestinal morphology

d1

d7

d14

d21

- Pre-weaning: d 1 to 21, villi surface was increased
- Post-weaning: reduced villi number and folding

Wang et al., 2016

Weaning stress on intestinal barrier function

Neunlist et al., 2013; Wang et al., 2016

Weaning stress on intestinal barrier function, cont.

Wang et al., 2016

Middle of the small intestine

Normalized Values (arbitrary units)

Weaning stress on intestinal mucosal immunity

- Weaning induces a transient gut inflammation in pigs
 - Enhanced proinflammatory cytokines
 - Increased intestinal CD4+ and CD8+ T lymphocytes
 - Up-regulated matrix metalloproteinase
 - Down-regulated MHC I expression
 - Reduced secretory IgA

Days post-weaning

McCracken et al., 1999; Pié et al., 2004

Weaning stress on intestinal oxidative status

Yin et al., 2014

Focus on the GUT of weaning pigs

How to define a healthy gut

- Effective nutrient digestion and absorption
- Effective waste excretion
 Overall, should be concomitant with optimal performance

(the absence of diseases)

- A functional and protective gut immunity
- A minimal activation of stress/neural pathways

Pluske et al., 2018

Nutritional strategies

- Optimization of feed formulation
- Utilization of low protein diet in postweaning period
- Enhancement of feed processing and manufacturing
- Supplementation of feed additives

Feed additives

- Improvement of nutrient digestion and absorption (i.e. exogenous enzymes)
- Regulation gut microbiota to more favorable bacterial species (i.e. prebiotics & probiotics)
- Immune modulation to enhance disease resistance of weaned pigs (i.e. β-glucan, phytochemicals)

Two examples

Functional amino acids

Short chain fatty acids

Functional amino acids

- Indispensable amino acids vs. dispensable amino acids
- Functional amino acids
 - Extra benefits to the host beyond the nutrient contribution
 - Arginine family (glutamate, glutamine, proline)
 - Aromatic amino acids (tryptophan, phenylalanine, tyrosine)

Arginine family

Wu et al., 2007

Arginine family

Substrates for tissue protein synthesis

Regulate

- Cellular signaling
- Hormone synthesis and secretion (insulin, glucagon, etc.)
- Endothelial function, vasodilation, blood flow
- Nutrient metabolism
- Intestinal integrity and function
- Immune function and health

Wu et al., 2007

Proline

 Oral administration of proline enhanced protein expression of ornithine decarboxylase (ODC) activity in jejunum, ileum, and colon

Tan et al., 2017

Proline

 Oral administration of proline enhanced the expression of proteins involved in tight junction barrier of weaned pigs

Tan et al., 2017

Aromatic amino acids pig systemic immunity

Sorum na/ml	Saline		LPS	
Serum, pg/mL	Basal diet	TPT diet	Basal diet	TPT diet
IL1β	254°	215 ^c	1384 ^a	793 ^b
IL6	17.1 ^c	9.4 ^c	270 ^a	132 ^b
IL8	98 ^c	96 ^c	1076 ^a	674 ^b
IL12	115 ^c	102 ^c	497 ^a	310 ^b
GM-CSF	154 ^b	113 ^c	189 ^a	161 ^b
ΤΝFα	0.06 ^c	0.07 ^c	326 ^a	171 ^b
IL4	317 ^b	660ª	167°	291 ^b
TGFβ1	897 ^a	883 ^a	416 ^c	623 ^b

• Aromatic amino acids: Trp, Phe, Tyr, 1.5*NRC, 2012

Tan et al., 2017

Aromatic amino acids pig intestinal immunity

Gene	Saline		LPS		
expression	Basal diet	TPT diet	Basal diet	TPT diet	
IL6	1 ^{ab}	0.76 ^b	1.41 ^a	0.44 ^b	
IL12	1 ^b	0.91 ^b	1.71 ^a	0.37 ^c	
IL18	1 ^{ab}	1.04 ^{ab}	1.52ª	0.47 ^b	
TNFα	1 a	1.10 ^a	1.28ª	0.27 ^b	
TGFβ	1 ^c	2.57 ^{ab}	1.93 ^b	3.10 ^a	

Tan et al., 2017

Aromatic amino acids Potential mechanisms

- Dietary supplemented with aromatic amino acids increased CaSR and PLCβ2 protein expression levels
- But decreased p-NF-κB, IKKα/β, and IκB protein expression levels in the LPS-challenged piglets

Tan et al., 2017

Short chain fatty acids

- Fatty acids with a chain of < 6 carbon atoms
 - Acetate, propionate, and butyrate
- Produced by microbial fermentation in the gastrointestinal tract of pigs
- Major fuel source for colonocytes (90% of butyrate)
- Derivatives: salts (Ca, Na), monobutyrin, tributyrin

Acetic acid (acetate)

Propionic acid (propionate)

Butyric acid (butyrate)

Short chain fatty acids Antimicrobial effects of butyric acid

Gram-negative bacteria	MIC, mg/mL	Gram-positive bacteria	MIC, mg/mL
<i>E. coli</i> , wild type	2.3	Enterococcus faecalis	2.0
<i>E. coli</i> , F18	2.5	Clostridium perfringens	1.2
<i>Salmonella</i> Typhimurium, wild type	2.7	Streptococcus pneumonia	1.0
<i>Salmonella</i> Typhimurium, disease break	2.6	Streptococcus suis	0.7
<i>Campylobacter jejuni</i> , wild type	0.5	MIC: minimal inhibitory concentration	
<i>Campylobacter jejuni</i> , disease outbreak	0.7		

Kovanda et al., 2019

Short chain fatty acids

Host defense peptides, in vitro

- Also known as antimicrobial peptides
- Defensins or cathelicidins
- Small, positively charged, and amphipathic
- Disturb cell membrane structure, penetrate into cells, regulate intracellular pathways, cause bacterial cell death

Zeng et al., 2013

Short chain fatty acids Host defense peptides, in vivo

• Weaning pigs, 0.2% sodium butyrate, 10 days

Xiong et al., 2016

Acknowledgements

Chinese Academy of Sciences

- Dr. Yulong Yin
- Dr. Bie Tan
- Dr. Xia Xiong

University of Illinois Dr. Hans Stein

- WFISS at UC Davis
 - Dr. Xunde Li

Graduate students

- Yijie He
- Kwangwook Kim
- Cynthia Jinno
- Lauren Kovanda
- Vivian Perng
- Sheena Kim

DSM BRIGHT SCIENCE. BRIGHTER LIVING.

DSM

• Dr. Anna-Maria Kluenter

http://animalnutr-ansci.faculty.ucdavis.edu/