Dietary phytonutrients enhance disease resistance of pigs

Yanhong Liu,*,1 D. Bravo,2 and J. E. Pettigrew3

University of California, Davis, USA¹, Pancosma SA, Geneva, Switzerland², and University of Illinois, Urbana, USA³

Outline

- Previous knowledge
- Hypothesis
- Test of hypothesis
- What does it mean?

Weaning stress

- Maternal separation
- Environmental change
- Increased exposure to pathogens
- Social hierarchy stress
- Move to solid feed
- Transportation stress

Gut morphology change of weanling pigs

- Reduced feed intake
- Negative effects on intestinal morphology

Declined intestinal functions

- Reduced brush-border enzyme activity
- Reduced absorption ability

- Diarrhea
- Poor growth performance

Immunity of weanling pigs

- Passive immunity is declining
- Active immunity is not fully developed

- Highly sensitive to infectious disease
- Divert nutrients away from growth to immune response
- Poor growth performance

Antibiotic use on farms

Feed additives

- Mannan oligosaccharides
- Immune egg products
- Direct-fed bacteria
- Yeast/yeast products
- Plant extracts

Plant extracts

- Extracted from parts of plants or synthesized
- Concentrated, hydrophobic, volatile aroma
- Mixtures of secondary plant metabolites
- Liquid or powder
- Phenolic compounds

Plant extracts

- Biological effects:
 - ✓ Antimicrobial
 - **✓** Anti-inflammatory
 - ✓ Antioxidant
 - ✓Others: Antiviral, Antifungal, Antiparasitic, Antitoxigenic

Hypothesis

- 1) Certain plant extracts modify immune function of pigs
- 2) This leads to increased disease resistance

Test of hypothesis

- Exp. 1: In vitro cell culture
- Exp. 2: E. coli challenge study
- Exp. 3: PRRS challenge study

Experiment 1

In vitro cell culture assays

Anti-inflammatory effects

LPS-stimulated porcine alveolar macrophages

Liu et al., 2012

Anti-inflammatory effects

LPS-stimulated porcine alveolar macrophages

Liu et al., 2012

Conclusions – Exp. 1

- All of plant extracts used in this experiment may have potent anti-inflammatory effects
- Carvacrol, cinnamaldehyde, eugenol, and garlicon might be the more powerful candidates
- Capsicum oleoresin, garlicon, and turmeric oleoresin were selected to do *E. coli* and PRRSV challenge studies

Experiment 2

In vivo *E. coli* challenge study

Procedures

* 4 diets: control, 10 ppm capsicum oleoresin, 10 ppm garlicon, 10 ppm turmeric oleoresin

Frequency of diarrhea

Pig days with diarrhea score ≥ 3 1, normal; 5, watery diarrhea

Possible mechanism for reduced diarrhea

Possibly improved gut barrier function!

Plant extracts reduced systemic inflammation caused by *E. coli* infection

Plant extracts reduced gut inflammation caused by *E. coli* infection

Ileum (d 5 PI)

Plant extracts reduced gut inflammation caused by *E. coli* infection

Conclusions – Exp. 2

- Feeding plant extracts reduced diarrhea and enhanced disease resistance of weanling pigs
- Possible mechanisms
 - Gut barrier function
 - Gut mucosa immunity
 - Systemic immunity

Experiment 3

In vivo porcine reproductive and respiratory syndrome virus (PRRSV) challenge study

Rectal temperature

d 7, 9, 11: PRRSV: *P* < 0.01

Rectal temperature

d 7, 9, 11: PRRSV: *P* < 0.01

Feed efficiency, d 0-14

PRRSV: *P* = 0.07

Serum viral load-PRRSV

d 7 & 14: PRRSV: P < 0.01

Serum TNF-α - PRRSV

d 7 & 14: PRRSV: P < 0.01

Serum C-reactive protein- PRRSV

d 7 & 14: PRRSV: P < 0.01

Conclusions – Exp. 3

- Feeding plant extracts delayed fever caused by PRRS infection
- Feeding plant extracts improved feed efficiency of pigs
- Possible mechanisms
 - Reduced viral load
 - Reduced systemic inflammation

Hypothesis

- 1) Certain plant extracts modify immune function of pigs Accept
- 2) This leads to increased disease resistance Accept

Acknowledgements

- Dr. Pettigrew lab University of Illinois
- Pancosma

Comparative Animal Nutrition & Physiology Laboratory

http://animalnutr-ansci.faculty.ucdavis.edu/