Immune response to phytonutrients in pigs – antioxidant response

Yanhong Liu
University of California, Davis
October 12, 2016
Outline

• Phytonutrients – plant extracts
 • Anti-inflammatory effects
• Weaning stress – oxidative stress
• Antioxidants – plant extracts?
• Overall summary
• Future research
Phytonutrients- plant extracts

• Extracted from parts of plants or synthesized
• Concentrated, hydrophobic, volatile aroma
• Mixtures of secondary plant metabolites
• Liquid or powder
• Phenolic compounds
Anti-inflammatory effects

In vitro

LPS-stimulated porcine alveolar macrophages

Liu et al., 2012
Frequency of diarrhea

Sham

Control vs. plant extracts
$P < 0.05$

E. coli

Control vs. plant extracts
$P < 0.05$

Pig days with diarrhea score ≥ 3
1, normal; 5, watery diarrhea

Liu et al., 2013
Possible mechanism for reduced diarrhea

Ileal villi height (d 5 PI)

MUC2 in ileal mucosa (d 5 PI)

- Possibly improved gut barrier function!

Liu et al., 2013, 2014
Plant extracts reduced systemic inflammation caused by *E. coli* infection

White blood cell counts

Serum TNF-α

Liu et al., 2013
Plant extracts reduced gut inflammation caused by *E. coli* infection

Liu et al., 2013
Plant extracts reduced gut inflammation caused by \textit{E. coli} infection

\textbf{The Prostaglandin Pathway}

\begin{itemize}
 \item Arachidonic acid
 \item TNF-\(\alpha\)
\end{itemize}

\begin{itemize}
 \item Cyclooxygenase-2 (COX-2)
 \item PGG2 → PGH2
 \item PGG2 → PGG2
 \item TXA2
 \item PGF2\(\alpha\)
 \item PGE2
 \item PGD2
 \item PGI2
\end{itemize}

\textbf{Inflammation!}

\textit{Liu et al., 2014}
Summary

Anti-inflammatory effects

• Suppressed the production of inflammatory mediators in vitro

• Reduced diarrhea and enhanced disease resistance of weaning pigs

• Possible mechanisms
 • Gut barrier function
 • Gut mucosa immunity
 • Systemic immunity
 • Reduced oxidative stress?
Weaning stress

• Maternal separation
• Environmental change
• Increased exposure to pathogens
• Social hierarchy stress
• Move to solid feed
• Transportation stress
Oxidative stress in weaning pigs

- Poor immunity
- Weak intestinal structure
- Other stresses
- Metabolic stress
- Weaning stress
Oxidative stress

• An excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants (Pisoschi and Pop, 2015)

• A disturbance in the prooxidant to antioxidant balance in favor of the oxidant species, leading to potential damage (Sies et al., 1991)
Reactive oxygen species (ROS)

- Free radical and non-free radical oxygen molecules
 - Hydrogen peroxide (H_2O_2)
 - Superoxide (O_2^-)
 - Singlet oxygen (1/2 O_2)
 - Hydroxyl radical ($\cdot\text{OH}$)

McDaniel, 2013
Reactive oxygen species (ROS)

- Internally generated sources
 - Mitochondria
 - Xanthine oxidase
 - Peroxisomes
 - Inflammation
 - Phagocytosis
 - Arachidonate pathways
 - Injury

Valko et al., 2006
Reactive oxygen species (ROS)

• Dual roles in biological system
 • Low concentration - defend against infectious agents
 • High concentration – important mediators of damage to cell structures, including lipids, proteins, and nucleic acids
• Balance is very important!
Biomarkers for oxidative stress

<table>
<thead>
<tr>
<th>Free radicals acceleration</th>
<th>• H_2O_2, NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant status</td>
<td>• Tocopherols, ascorbic acid, uric acid</td>
</tr>
<tr>
<td></td>
<td>• Glutathione (GSH and GSSG), etc.</td>
</tr>
<tr>
<td>Antioxidant enzyme activities</td>
<td>• Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), 8-hydroxyl-2-deoxyguanosine (8-OHdG), catalase (CAT), Inhibitory hydroxyl ability (IHA)</td>
</tr>
<tr>
<td>Lipid peroxidation</td>
<td>• Malondialdehyde (MDA)</td>
</tr>
</tbody>
</table>

Kadiiska et al., 2015
Systemic oxidative stress caused by weaning

- Increased free radicals in serum
 - H_2O_2, NO
- Reduced antioxidant enzyme activities in serum
 - GSH-Px, SOD
- Increased lipid peroxidation in serum
 - MDA

Zhu et al., 2013
Oxidative stress in GI tract caused by weaning

- Reduced digestive enzyme activities in jejunum
 - Sucrase, Maltase, Amylase, Lipase
- Increased caspase concentrations in jejunum
 - Caspase-3, caspase-8, caspase-9
- Increased lipid peroxidation and decreased antioxidant enzymes activities

Zhu et al., 2012, 2013
Oxidative stress in liver caused by weaning

- Increased free radicals
 - H_2O_2, NO
- Increased oxidative injury
 - MDA, 8-OHdG
- Reduced antioxidant enzyme activities
 - GSH-Px, SOD, IHA
- Enhanced hepatic enzyme activities
 - Aspartate aminotransferase (AST), alanine aminotransferase (ALT)

Luo et al., 2016
Oxidative stress in brain

- Increased lipid peroxidation
- Decreased GSH level and GSH/GSSG ratio
- Reduced antioxidant enzyme activities
 - IHA, SOD, GSH-Px, CAT
- Rat data, need verify in pigs

Hong et al., 2016
Antioxidants

- Stable molecules, donate an electron to a rampaging free radical and neutralize it, thus reducing its capacity to damage (Lobo et al., 2016)

http://normsfarms.com/what-are-antioxidants/
Antioxidants – Level 1

Initiator → R· → ROO· → Non-radical products

Initiator → R· → ROO· → Non-radical products

ROOH → RH → ROOH + A·

• Preventive antioxidants
 • Suppress the formation of free radicals; SODs, CAT, GSH-Px

Amorati et al., 2013; Lobo et al., 2016
Antioxidants – Level 2

• Radical-scavenging antioxidants
 • Suppress chain initiation and/or break the chain propagation reactions, such as vitamin C and E

Amorati et al., 2013; Lobo et al., 2016
Antioxidants – Level 3

- Repair antioxidants
 - Remove oxidatively modified proteins, such as proteolytic enzymes

Amorati et al., 2013; Lobo et al., 2016
Type of antioxidants

• **Endogenous antioxidants**
 - Enzymatic antioxidants (*SODs, CAT, GSH-Px*)
 - Non-enzymatic antioxidants (*ascorbic acid, Glutathione, melatonin, vitamin E, uric acid*)

• **Exogenous antioxidants**
 - butylated hydroxytoluene (*BHT*), butylated hydroxyanisole (*BHA*), Se and vitamin E
 - Plant extracts
Plant extracts & antioxidant effects

• Phenolic compounds (carvacrol, thymol, eugenol, etc.)

• Other volatile constituents (e.g., sulfur-containing components of garlic or onions)
Total phenols content

<table>
<thead>
<tr>
<th>Plant extracts</th>
<th>Total phenols Gallic acid equivalent (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clove</td>
<td>899</td>
</tr>
<tr>
<td>Thyme</td>
<td>784</td>
</tr>
<tr>
<td>Oregano</td>
<td>764</td>
</tr>
<tr>
<td>Rosemary</td>
<td>225</td>
</tr>
<tr>
<td>Sage</td>
<td>123</td>
</tr>
</tbody>
</table>

Viuda-Martos et al., 2009
Antioxidant activities
DPPH method

IC$_{50}$, mg/mL

Thyme, Oregano, Clove, Sage, Rosemary, Ascorbic acid, BHT

IC$_{50}$: concentration (mg/mL) for a 50% inhibition

Viuda-Martos et al., 2009
Antioxidant activities
TBARS assay

IC\textsubscript{50}, μg/mL

Thyme	Oregano	Clove	Sage	Rosemary	Ascorbic acid	BHT
80 | 20 | 10 | 40 | 60 | 1 | 0

IC\textsubscript{50}: concentration (μg/mL) for a 50% inhibition

Viuda-Martos et al., 2009
Antioxidant activities
Ferrous ion-chelating (FIC) assay

EC₅₀, mg/mL

Thyme Oregano Clove Sage Rosemary Ascorbic acid BHT

EC₅₀: concentration (μg/mL) for a 50% chelating effect

Viuda-Martos et al., 2009
Antioxidant activities
FRAP (Ferric reducing antioxidant power) assay

TEAC, μM Trolox/mL

- Clove
- Ascorbic acid
- BHT
- Oregano
- Thyme
- Rosemary
- Sage

TEAC: Trolox equivalent antioxidant capacity

Viuda-Martos et al., 2009
In vitro antioxidant effects summary

- **DPPH**: Clove > Thyme > Oregano > Sage > Rosemary
- **TBARS**: Oregano > Clove > Thyme > Sage > Rosemary
- **FRAP**: Clove > Oregano > Thyme > Rosemary > Sage
- **FIC**: Rosemary > Sage > Thyme > Clove > Oregano

• Results obtained from different in vitro methods are variable

Viuda-Martos et al., 2009
In vitro methods for antioxidant activities summary

- Chemical-based antioxidant activity

Pros: simple and fast

Cons: not consider certain parameters in complex cell environments; mechanisms of antioxidants are not only by scavenging free radicals
Lipid peroxidation assay

- **Lipid peroxidation**: the oxidative degradation of lipids. In this process, free radicals take electrons from the lipids, resulting in cell damage
- Sensitively detect the concentration of MDA present in a variety of samples (liver and brain)
- One of most widely accepted assays for oxidative damage
Cellular antioxidant activity

- Very attractive testing method to support antioxidant research prior to animal studies
- Shows high physiological quality in antioxidant measurements
- Applied to product extracts, foods, dietary supplements
- Cheaper compared with animal studies
In vivo animal trials

• Highly recommended!
 • Dose effects
 • Mechanisms of action
 • Different stress conditions
Overall summary

• Reducing oxidative stress should be taken into account to promote pig health and production, especially in weaning stage

• Anti-inflammatory effects of plant extracts have been confirmed both in vitro and in vivo

• Plant extracts are potential antioxidants that can be added to animal feed
Future research

• Correlations between chemical-based methods, lipid peroxidation assay, and cellular antioxidant assay should be conducted to provide theoretical guidance in rationally screening anti-oxidant components

• More research are needed to verify the antioxidant activities of plant extracts supplemented to animal feed
Acknowledgements

• CLANA

• Pancosma
Comparative Animal Nutrition & Physiology Laboratory

http://animalnutr-ansci.faculty.ucdavis.edu/