Immune response to phytonutrients in pigs – antioxidant response

Yanhong Liu University of California, Davis October 12, 2016

Outline

- Phytonutrients plant extracts
 - Anti-inflammatory effects
- Weaning stress oxidative stress
- Antioxidants plant extracts?
- Overall summary
- Future research

Phytonutrients- plant extracts

- Extracted from parts of plants or synthesized
- Concentrated, hydrophobic, volatile aroma
- Mixtures of secondary plant metabolites
- Liquid or powder
- Phenolic compounds

Anti-inflammatory effects In vitro

Frequency of diarrhea

Pig days with diarrhea score ≥ 3 1, normal; 5, watery diarrhea

Liu et al., 2013

Possible mechanism for reduced diarrhea

Possibly improved gut barrier function!

Liu et al., 2013, 2014

Plant extracts reduced systemic inflammation caused by *E. coli* infection

Plant extracts reduced gut inflammation caused by *E. coli* infection

Plant extracts reduced gut inflammation caused by *E. coli* infection

Summary Anti-inflammatory effects

- Suppressed the production of inflammatory mediators in vitro
- Reduced diarrhea and enhanced disease resistance of weaning pigs
- Possible mechanisms
 - Gut barrier function
 - Gut mucosa immunity
 - Systemic immunity
 - Reduced oxidative stress?

Weaning stress

- Maternal separation
- Environmental change
- Increased exposure to pathogens
- Social hierarchy stress
- Move to solid feed
- Transportation stress

Oxidative stress in weaning pigs

Oxidative stress

- An excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants (Pisoschi and Pop, 2015)
- A disturbance in the prooxidant to antioxidant balance in favor of the oxidant species, leading to potential damage (Sies et al., 1991)

Reactive oxygen species (ROS)

- Free radical and non-free radical oxygen molecules
 - Hydrogen peroxide (H₂O₂)
 - Superoxide (O₂-)
 - Singlet oxygen (1/2 O₂)
 - Hydroxyl radical (-OH)

Reactive oxygen species (ROS)

- Internally generated sources
 - Mitochondria
 - Xanthine oxidase
 - Peroxisomes
 - Inflammation
 - Phagocytosis
 - Arachidonate pathways
 - Injury

Valko et al., 2006

Reactive oxygen species (ROS)

- Dual roles in biological system
 - Low concentration defend against infectious agents
 - High concentration important mediators of damage to cell structures, including lipids, proteins, and nucleic acids
 - Balance is very important !

Valko et al., 2006

Biomarkers for oxidative stress

Free radicals acceleration	• H ₂ O _{2,} NO
Antioxidant status	 Tocopherols, ascorbic acid, uric acid Glutathione (GSH and GSSG), etc.
Antioxidant enzyme activities	• Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), 8-hydroxyl-2-deoxyguanosine (8-OHdG), catalase (CAT), Inhibitory hydroxyl ability (IHA)
Lipid peroxidation	 Malondialdehyde (MDA)

Kadiiska et al., 2015

Systemic oxidative stress caused by weaning

- Increased free radicals in serum
 - H₂O₂, NO
- Reduced antioxidant enzyme activities in serum
 - GSH-Px, SOD
- Increased lipid peroxidation in serum
 - MDA

Zhu et al., 2013

Oxidative stress in GI tract caused by weaning

- Reduced digestive enzyme activities in jejunum
 - Sucrase, Maltase, Amylase, Lipase
- Increased caspase concentrations in jejunum
 - Caspase-3, caspase-8, caspase-9
- Increased lipid peroxidation and decreased antioxidant enzymes activities

Zhu et al., 2012, 2013

Oxidative stress in liver caused by weaning

- Increased free radicals
 - H₂O₂, NO
- Increased oxidative injury
 - MDA, 8-OHdG
- Reduced antioxidant enzyme activities
 - GSH-Px, SOD, IHA
- Enhanced hepatic enzyme activities
 - Aspartate aminotransferase (AST), alanine aminotransferase (ALT)

Luo et al., 2016

Oxidative stress in brain

- Increased lipid peroxidation
- Decreased GSH level and GSH/GSSG ratio
- Reduced antioxidant enzyme activities
 - IHA, SOD, GSH-Px, CAT
- Rat data, need verify in pigs

Hong et al., 2016

Antioxidants

 Stable molecules, donate an electron to a rampaging free radical and neutralize it, thus reducing its capacity to damage (Lobo et al., 2016)

Antioxidants – Level 1

- Preventive antioxidants
 - Suppress the formation of free radicals; SODs, CAT, GSH-Px

Amorati et al., 2013; Lobo et al., 2016

Antioxidants – Level 2

Radical-scavenging antioxidants

• Suppress chain initiation and/or break the chain propagation reactions, such as vitamin C and E

Amorati et al., 2013; Lobo et al., 2016

Antioxidants – Level 3

Repair antioxidants

 Remove oxidatively modified proteins, such as proteolytic enzymes

Amorati et al., 2013; Lobo et al., 2016

Type of antioxidants

- Endogenous antioxidants
 - Enzymatic antioxidants (SODs, CAT, GSH-Px)
 - Non-enzymatic antioxidants (ascorbic acid, Glutathione, melatonin, vitamin E, uric acid)
- Exogenous antioxidants
 - butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), Se and vitamin E
 - Plant extracts

Plant extracts & antioxidant effects

- Phenolic compounds (carvacrol, thymol, eugenol, etc.)
- Other volatile constituents (e.g., sulfur-containing components of garlic or onions)

Total phenols content

Plant extracts	Total phenols Gallic acid equivalent (µg/mL)
Clove	899
Thyme	784
Oregano	764
Rosemary	225
Sage	123

Viuda-Martos et al., 2009

Antioxidant activities DPPH method

IC₅₀, mg/mL

IC₅₀: concentration (mg/mL) for a 50% inhibition

Viuda-Martos et al., 2009

IC₅₀: concentration (µg/mL) for a 50% inhibition

Viuda-Martos et al., 2009

Antioxidant activities Ferrous ion-chelating (FIC) assay

EC₅₀, mg/mL

EC₅₀: concentration (µg/mL) for a 50% chelating effect

Viuda-Martos et al., 2009

Antioxidant activities FRAP (Ferric reducing antioxidant power) assay

In vitro antioxidant effects summary

- **DPPH:** Clove > Thyme > Oregano > Sage > Rosemary
- **TBARS:** Oregano > Clove > Thyme > Sage > Rosemary
- FRAP: Clove > Oregano > Thyme > Rosemary > Sage
- **FIC:** Rosemary > Sage > Thyme > Clove > Oregano
- Results obtained from different in vitro methods are variable

Viuda-Martos et al., 2009

In vitro methods for antioxidant activities summary

- Chemical-based antioxidant activity
- Pros: simple and fast
- Cons: not consider certain parameters in complex cell environments; mechanisms of antioxidants are not only by scavenging free radicals

Lipid peroxidation assay

- Lipid peroxidation: the oxidative degradation of lipids. In this process, free radicals take electrons from the lipids, resulting in cell damage
- Sensitively detect the concentration of MDA present in a variety of samples (liver and brain)
- One of most widely accepted assays for oxidative damage

Cellular antioxidant activity

- Very attractive testing method to support antioxidant research prior to animal studies
- Shows high physiological quality in antioxidant measurements
- Applied to product extracts, foods, dietary supplements
- Cheaper compared with animal studies

In vivo animal trials

- Highly recommended!
 - Dose effects
 - Mechanisms of action
 - Different stress conditions

Overall summary

- Reducing oxidative stress should be taken into account to promote pig health and production, especially in weaning stage
- Anti-inflammatory effects of plant extracts have been confirmed both in vitro and in vivo
- Plant extracts are potential antioxidants that can be added to animal feed

Future research

- Correlations between chemical-based methods, lipid peroxidation assay, and cellular antioxidant assay should be conducted to provide theoretical guidance in rationally screening anti-oxidant components
- More research are needed to verify the antioxidant activities of plant extracts supplemented to animal feed

CLANA, 2016

Acknowledgements

• CLANA

Pancosma

CLANA, 2016

Comparative Animal Nutrition & Physiology Laboratory

http://animalnutr-ansci.faculty.ucdavis.edu/